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Abstract

A trade-off analysis between maneuver period,
execution errors, and orbit determination uncere
tainties is carried out for the Ocean Topography
Experiment (TOPEX) spacecraft for s given nodal
equatorial constraint. Semimajor axis and eccent~
ricity are controlled with minimum impulse using
the linear theory of optimal transfer between
close coplanar near-circular orbits. Ellipses of
equal minimum and average maneuver periods are
presented in the (3cey, 30gp) space for different
nodal equatorial constraints enabling the deter-
mination of the appropriate combination of execu-
tion errors and ordbit determination uncertainties
that guarantees a mission required mininum maneu-
ver period for a given nodal deadband.

1._Introduction

The Ocean Topography Experiment (TOPEX) 1is a
proposed NASA earth satellite mission to study the
general circulation of the oceans by means of one
board precision altimeter measurements. The Jet
Propulsion Laboratory has performed preliminary
(Phase A) conceptual studies of the TOPEX mission.
This paper describes one aspect of these studies,
the TOPEX orbit sustenance maneuver design,

The orbit selected by the mission design spec~
islists has a mean altitude of 1334 km and is in-
clined 63° respective to the eguator. This orbit
is not strongly influenced by atmospheric drag nor
synchronous with the dominant tidal constituents
and cen observe 2lmost all the open water on
Earth, in order to resolve the two components of
geostrophic current at mid-latitudes. Further-
more, in order to sample the ocesn variability
without smbiguity, the satellite's ground track
was designed to repeat itself almost exactly every
ten days. However, the node at the equator exper-
jences an appreciable drift which is mainly due to
atmosoheric drag which decays the ordit semimajor
axis and to the perturbing effects of the Earth
gravity harmonics, soli<lunar attraction, and
solar radiation pressure.

The scientific personnel require to meintain
the Tongitude of the spacecraft's initial ascend-
ing node within a narrow deadband of 2] km at the
equator, and this is accomplished by way of maneue
vers whose freguency should not exceed once per
month, in order to simplify mission operations and
reduce interference with science. :

The rate and pattern of the nodal drift are a
strong function of the ordbit's semimajor axis
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" exactly becpuse ooy and Iy,

which must be controlled very tightly if the above
requirement is to de satisfied.

The maneuver strategy consists, therefore, of
transferring the spacecraft to an orbit whose
semi-major axis is such that the nodal constraint
boundaries are not violated for the longest poss-
ible time, maximizing thereby the interval between
saneuvers. These maneuvers are coeputed using
Contensou's linear theory of optimal transfer be-
tween close coplanar near-circular orbits in which
both a (semimajor axis) and € (eccentricity vec-
tor) are controlied with minimum impuise. These
transfers introduce execution errors and are de-
pendent on the orbit determination uncertainties
on the semimajor axis.

~ The execution errors are mainly due to cutoff
errors and to hotecold firings of the propulsion
system, while the errors in the estimites of the
position and velocity of the spacecraft in its or-
pit are influenced by errors in the measurement of
the spacecraft's position and the errors in esti-
mating the perturbing forces acting on it. The
uncertainty in the knowledge of the gravitational
field and the inability to know the precise loca-
tion of the tracking stations relative to the cen-
ter of the Earth, are among the main sources of
orbit determination uncertainties.

1t is, therefore, necessary to minimize cgy
and c,,, which are respectively the execution ere
ror and the uncertainty on the semimajor axis, in
order to maximize the interval between mansuvers;
this, in effect, constitutes a tradeoff analysis
between maneuver period and gex, Oppe

The targeting strategy takes advantage of the
fact that atmospheric drag forces the node to
drift eventually towards larger values, even {f it
is drifting initially in the opposite direction
for a biased semimajor axis. This, in effect,
makes it possible to position the spacecraft on
the right end of the deadband (+1 km) and chose
its semimajor axis in such a way that the correse
ponding ground track drifts initially towards the
other end without violating it, before reversing
the motion to ‘the right and violating it after the
Tongest possible time,

However, this target orbit cannot be reached
combine to create an
overall uncertainty in the achieved semimajor
axis. The numerical input to the trajectory gene
:rlting programs used in this paper are as fol-
ows:

' Mass of the spacecraft = 1000 kg
Cross sectional area = 10

Sun and moon's fourth degree sperical
harmonics included

Coefficient of atmosvheric drag Cp = 2.1
Solar rigiation ressure force coefficient =
5.8 10°* (kg/hre)/km

Finally, Appendices A and B drawn from the
Jecture notes on space mechanics by Professor John

.



V. Breakwell of Stanford University describe the
opzimal transfer solutions and tne error an2lysis
used in the paper.

11. Linear Analvsis of the Nodal Drift at the
touator

The TOPEX baseline mean orbital elements bore-
rowec from Referencé 1 and listed deiow in Japie 1
are average Kepler elements and are computed by
Jet Propulsion Laboratory's SAMDP software using
its long term orbit prediction option (LOP).

These elements, based on a nominal launch time of
1430 GMT on 1 September 1586 from the Western Test
Range (WTR), are obtained by intearating the La-
orange planetary equations for average elements.
The gravitational disturbing functions are evalu-
ated by analytical averaging while atmospheric
drag and solar radiation pressure disturbing funce
tions are evaluated by numerical averaging.

Table 1. TOPEX Baseline Mean Orbital Elements

z = 7712.1903'km (semimajor axis)

v = 0 (eccentricity)

T+ 63°.434949 (inclination)

T = 277°.67199 (right ascension of node)
= 0° (argument of periapse)

e
¥ = o® (mean anomaly at epoch)

The mean eguatorial altitude of this orbit is
T = 1334.05 km with an Earth mean eguatorial rad-
fus of R = 6378.14 km. This orbit is an exact
ten day repeat orbit covering 127 revolutions in
that period of time and regaining the initial East
Tongitude of its ascending node of % = $0°,7091 at
the end of each such interval.

A parametric study can be carried out as 2
first approximstion, in order to relate maneuver
frequency as a function of the nodal drift at the
equator for different levels of orbit determina-
tion uncertainties and maneuver execution errors.

Taking into account the effect of the second
zonal harmonic J2, the nodal period can be evalua-
ted by
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where a is the orbit semimajor axis, 1 fts incline
ation respective to the equator, and u the Earth's
gravitational constant, The rate of change of Py,
with respect to a, is given by

2
P 1/2 5. (R 2
Feu(®) -3 d) wlon
(2-2)
gma=32 | 2
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The nodal period is essentially a function of 2
and with

H* 398601.3 km3/s2

Jp = 1.08263 10°3

BPn
rulie 1.31125 s/km

-

fguation {B-.2) of Apendix 3 can now pe used as
follows

sa = &5y t aax

fsaf2 - i-z efeyey} + & E{s}sx} + 16E 3x8x

°§ = -;% u§ 4-%::,(93, + 16:,2( {2-3)
where o 1s the correlation factor between g, and
oy. MWith respect to an inertial reference frame,
the equator moves 2t & rate Vo = yeRe = 72821159
10 x 6378.14 = AG510136]1 km/s and travels a
distance D in time t» D = 2,15 D seconds.

This indicates that the subsatellite point on the
surface of the Earth must reach the equator within
+2.15 D seconds from its nominal crossing time in
order to satisfy the = D km nodal deadband at the
equator.

Given o, from (2.3), and using the partial in
{2.2), 6Py = 0a x 1.311 s/rev, and a linear
expression of the nodal drift is obtained by

d=&Ppx Vg x N (2.4)

where N represents the number of revolutions flown
by TOPEX in its exact ten day repeat orbit in a
number of days equal to & multiple of ten.

Figure 1 shows the linear growth of d as a
function of time foroy = 1 meter andoy = 1 am/s
for both o = 0 and » = =1 (uncorreiated and fully
correlated cases). For example, for a maneuver
period of 30 days, the nodal drift is between .8
and 1 km with the upper bound corresponding to the
uncorrelated case.

111, A Preliminary Tarasting Strateaqy
for Nogai Drift Contro

It 4s reguired to maintzin the initial East
Yongitude of the ascending node A = 90°.7091
within 2 tight deadband at the equater. There
exists a circular Keplerian orbit of a given .
semimajor axis that repeats itself exactly after
ten days and regains the initial East longitude of
its ascending node at the end of each repeat
cycle. This orbit is assumed to be under the
influence of the second zonal J2 alone and its
mean elements are shown in Table 1. When the
perturbing effects of the other gravity harmonics
(21 x 21 field), atmospheric drag, solar radiation
pressure, and soli=lunar pertubations are taken
into account, the orbit exveriences an appreciadle
arift of its node at the eguater and, therefore,
cannot repeat itself exactly every ten days as
before, This relatively small drift must be cone
trolled by maneuvers at freguent intervals, in
order to maintain the initial node within a small
deadband of £ 1 km, )
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Figure 1. Maneuver Tradeoffs

Figure 2 shows how the nodal drift, plotted at
ten day intervals, is 2 strong function of the
initial semimajor axis. It is convenient to
position the initial node at the +1 km end of the
deadband, in order to allow it to drift initially
towards the other end before turning and violating

the deadband after the longest possible time. The
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Figure 2. “$" Curves (rignt limit) <1 km Deadband

jnitial circular orpit of semimajor axis a = 77i2-
.2230 km is barely tangent to the -1 xm end and
stays for the longest period of 90 davs inside the
deadband. Orbits witn smaller semimajor axis vio-
late the deadband necessarily at the +1 km enc
while larger orbits violate the other end.

Figure 3 shows the nodal drift of this nominal
orbit with all the apove perturbations active,
with third body perturbations turned off, aad with
drag turned off respectively. The strong influ-
ence of atmospheric drag is apparent in these
plots; it is responsibie for the drift of the node
to the East because it decays semimajor axis even
though the drift is initially to the West because
of a small bias in semimajor axis. These orbits,
which are relatively close to one another, experi-
ence the same linear eccentricity growth generated
mainly by the Earth's Jg g and J7 g harmonics.
This is dispiayed in Figure 4a, which aiso shows
that the mission imposed coastraint on the eccente
ricity e < .001 is not violated until after 140
days. An additional maneuver is required at this
point to circularize the ordit. )
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Figure 4a. Evolution of Eccentricity vs. Time

In Figure 4b, the nominal orbit drift pattern
is shown as AFG; at point G, reached after some 90
days from A, the orbit can be retargeted to the
circular orpit with nominal semimajor axis of
7712,2230 km to follow the path GHI and stay for
another period of 90 days within the deadband.



However, the maneuvers introduce execution errors
and the transfer parameters are dependent on the
orpit determination uncertainties on the premaneu-
ver semimajor axis. A fixed execution error of 1
mm/s introduces an error in the target semimajor
axis of roughly =4 m; the two 4V's that achieve
the coplanar transfer (semimajor adjust and circu-
lation) are computed from the solutions presented
in Appengix A. The target orbit is, therefore,
given by a = 7712.2230 km and the lower bound & =
7712.2147 km. Point B is reached in 30 days after
A and corresponds to the worst achieved orbit,
since it violates the deadband in the shortest
time.
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Figure 4b. Simple Maneuver Strategy

At B, 2 retargeting to 7712.2190 km will again
. produce 2 worst drift pattern given by 8C and so
on. If an ordit determination uncertainty of 2 m
on the senimajor axis is taken into account and
Tinearly combined with the previous 1 mm/s execue
tion error, then the worst achievaple orbit would
be a = 7712.2120 km shown by AA‘ in Figure 4b and
would maintain its repeat node in the =l km dead-
band for only 12 days. The advantage of this
strategy is that the deadband is always violated
at the +1 km end, since it is not possible to ache
jeve a semimajor axis higher than the nominal ore
bit. However, a clear disadvantage of this strate
egy is the samll value of the minimum maneuver
periocd of only 12 days that must be considered.

IV. Orbit Sustenance Manauver Desian:
Rignt tnd Violation

In the last section, the target orbit was choe
sen in such a way that for a given maximum fixed

execution error on each of the two 4V's achieving
the required coplanar transfer, tne largest achie-
ved change in a would yield that particular ordit
whose nodal crossing pattern 3t the eguator would
remain within the required constraint limits for
the longest possible time.

The execution errors acting in the opposite
girection would yield tne smallest change in A2
and for sma)l deadbands in the range of 1 km, it
is the ordit with the smallest semimajor axis that
violates the rignt side (+l km) of the deadband
within a few days. This time is then chosen to
represent the minimum maneuver period (worst case)
from an execution error point of view.

1f the target orbit semimajor axis is 2ilowed
to increase, the highest achieved 42 and the low-
est achieved A2, corresponding to the two extreme
bounds on orbits, would reach 2 point where the
left and right end constraints are violated simul-
taneously on the same day. This effectively ine
creases appreciably the value of the minimum
maneuver period without affecting its maximum
value. The inverse problem of finding the corres-
ponding fixed execution error must now be solved.

This strategy is best illustrated graphically
by plotting the nodal drift at the equator of a
series of neighboring circular orbits for differ-
ent constraint values. Three such cases are cone
sidered (£0.5 km, 21 km, and 22 km) and shown in
Figure 5, 2 and 6, respectively. For the 20.5 km
deadband, the orbit corresponding to the largest
maneuver period of 55 days has an initial semima-
Jor axis of 7712.2193 km, while for the =2 km
deadband, the circular orbit of initial a = 7712.-
5276 km remains in that deadband for more than 125
2yS.
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Each orbit violates the constraint once starte
ing from small values of 2, until the maximum per-
fod is reached by the orpit that is barely tangent
to the left boundary. Figure 7 shows the evolue
tion of the constraint boundary crossing time vs,
initial semimajor axis. After the maximum time
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is reached, an instantaneous jump (vertical drop
or discontinuity) corresponding to the switch from
the right boundary to the left boundary {tangency
coint of best orbit) takes place, after which,
further increases in a, would yield diminisning
values of crossing times on the left boundary.

For the case of the =lkm deadband, there

exists a maximum time of 38 days for which the two
extreme orbits yield the same crossing time. Tne
target orbit is presented by point A, midpoint
petween A' and A" representing the two exireme
orbits. a2 = A'A = AA" with lower equal crossing
times always possible for larger values of a2 due
to larger values of the fixed execuytion errors.

in the absence of any orbit 5etemi.nation Lo
certzinties on the premaneuver semimajor axis,
there exists a direct relationship between c,, and

. Sex» these values being in reality 3o values,

Spa ® Koex (4.1)
in order to determine the value of K which is
weakly dependent on the deadband vaiue and the
maneuver period, equal crossing times are conside
ered for each equatorial constraint value starting
with the highest equal crossing time, read from
Figure 7 and 8.
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For example, for the =1 km deadband:
a. Period = 38 days ad

amin = 7712,2165 km

2zarget
. Smax = 7712,2230 km

s 7712.2197 km
b. P = 30 days -

amin * 7712.2150 kn_
Starget



amax * 7712.2237 km
= 7712.2198 km
c. P = 20 days -~
amin = 7712.2130 km _
dmax ® TTN2.2261 km ETOeT

= 7712.2195 km

Starting with a premaneuver 2jpiria] < dtarget 2nd
e initial, and targeting to d¢apget 8Nd Ctarget *
0 to achieve 2 circular orbit, the transfer go}u-
tions are of the nondegenerate type and 4V) =

nai‘nit (Ae . ii—A:;) and v, = - '“,-‘nit(“ . é;a_)

with se negative and & positive, so that &Vz -&V)

s D Ad wh

target Where A3target * 2target “?initial.
0n¥he othrgr hand, the exg:ut'lon e:gors Cex are
such that the largest achieved amay Corresponds to
A2ach = dmax =#injt with

z(AV1 + °.x)°e1 + Z(sz -0
“IC’I ® n

¢
) 62 (4.2)

where €] = 0 and 92 = 7 are the impulse locations
and n, the mean motion of the initial premsneuver

ordbit. Therefore,
By = 218V, - 0V)) + B Jo day, o, ¢ ‘—o-,fl
Oox * 7 (Bggy - targ %qu (4.3)
Kozt ol g zg njmys (4.4)

where n = (5/235043)272 and aqpqe * 7712 km
because of the small amount of semimajor axis
decay. .

With the value of K determined by {4.4), the
execution errors and the orbit determination un-
certainties can be RSS'ed by (4.5) delow:

2 2.2 2
a2 " KOy * %0
For a given deadband value, o, can be calculated
from (4.5) for different values of Gy and ogp
(Tables 2, 3 and 4).- Three levels of gpp = 1, 2 3
m and three levels of Sy » 0.5, 1 and 1.5 mm/s
are considered in these tables.

(4.5)

For each value of oy, the corresponding mane-
uver period can be read directly from Figures 7
and 8, For example, for the =1 km deadband, 2 ¢
corresponding to 2 given set (opx, 00p) 1S Shown
by CC" = C'C = cay; the target is given directly
by the abscissa of point L and the minimum maneue
ver period by its ordinate. Inversely for a given
minimum maneuver period imposed by the mission
planners, Cia is read from Figure 7 or 8, and

Equation (4.5) used to plot the ellipse in thne
(5ex» O0D) SPace. Figures 9 and 10 represent the
=1 km and =2 km deadbands and show some ellipses
of egual minimum maneuver period. In Figure S, 2
minimum maneuver period of 30 days is possible
with ogp = O m and cex = 1 mm/s or less while for
aogp = 2m, Cey Should be less than 0.9 mm/s,
Any (cex, oQp) inside the ellipse satisfies tne
minimum period requirements. :

Tables of ©y,

Tadble 2. 0.5 km Equatorial Constraint

Opn (M)
oD
c!x(m/s 1 2 3

0.5 2.368 2,934 | 3.689
(28) (24) {18)

1.0 4,409 4,737 5,238
(15) (14) .| (12.8)

1.5 6.518 6.744 7.108
{10) (8.5) (9)

Table 3. +1 km Equatorial Constraint

coo(m)
cex(m/s) 1 2 3

0.5 2369 | 2.912 | 3.67
(50) ) | (38

‘1.0 4,350 | 4.739 | s5.189
(30) (28) (25)

1.5 6.429 | 6.658 | 7.024
(20) (19) | (18.5)

Table 4. +2 km Equatorial Constraint

Sanim)
2 g (MY o 1 2 3

0.5 2,367 | 2.933 3.688
(90) (8s) (70)

1.0 4,406 | 4,73 5,235
(57) (85) (82)

1.5 6.513 | 6.740 7,101

L (a1) (40) (38)
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V., Orbit Sustenance Maneuver Desion:

Left tnd violation

in the previous section, for the =1 km dead-
band, & minimum maneuver period of 30 days with
Cex * 1 mm/s and ogp = 2 m was achieved by target-
ing the spacecraft to the circular orbit a = 7712-
L2193 km. With the uncertainties listed above,
the final achieved orpit will lie between the two
bounds a = 7712.2237 km and & = 7712.2150 km, the
target orbit being chosen in such a way that these
two bounds violate the deadband at the same time
(30 days), tne highest orbit crossing the left end
with the iowest orbit crossing the right end.

Figure 11 shows how these three orbits drift
starting from the common right end, with the ideal
orbit a = 7712,2230 km staying for the iongest
time of 90 days inside the deadband. A1l achieved
orbits whose semimajor axis 1ie between 7712.2150
km and 7712.2230 km will violate the right end
after a time 30 < T < 90 days, while all _achieved
orbits whose semimajor axis lie between 7712,2230
and 7712.2237 will necessarily violate the left
end. In the case pf the left end violation; & re-
taroeting maneuver to 7712.21 23 km would move the
node further to the left and is, therefore, inade-
quate from a desion point of view. In this case,
a different' target ordit must be chosen to remain
inside the deadband. The ideal ordit to target
the spacecraft at point A (Figure 11) s such that
it drifts to the right, starting tangentially to
the -] km end and crossing the right end after the
longest possibie time,

This orbit with &2 = 7712.2110 km stays for
some 42 days inside the ceadband; however, the
consideration of fixed magnitude execution errofs
and 0D {orbit determination) uncertainties reauir-
es the selection of 2 target orbit such that with
the worst combined uncertainty on the semimajor

axis the ideal orpit 7712.2110 km is never surpas-
sed. Equation (4.5) can be used to determine S;,
with K = # and where n is the wean motion of the
premaneuver orbit at Point A, The orbit elements
at A are obtained by letting the circular orbit
7712.2237 km decay for 30 days; a3p =,77 222116 km
and e3p = .2151 10°3 so that n = (u/a3p)i/% =
.000632183 rad/s and K = 4.298 m/mm/s. Tabie 5
shows values of oy, as & function of Sey and ogp
using Equation (4.%).
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Figure 1l. Maneuver Strategy From Left Limit
Table 5. Tadble of o,y (M)
San(m)
oo | 1 4
s 2 3
. 2.3702 2. 9356 3.8903 | 4.5407
1.0 | 4.8128 47405 |s5.2415 | 5.87
2.0 8.6539 8, 8256 9,1044 | 9,4811

.

Figures 12 and 13 are used to plot Figure 14,
which shows the right end crossing time as 8 funce
tion of initial semimajor axis, for different vale
ues of the deadband, namely =0.5 km, =] km and =2
km. Starting from 7712,2110 km, the drift pattern
of several orbits is shown, and the time that each
orbit takes before violating the right and is read
directly from Figures 12 and 13, For a given oca,
= f(cexs o0D), the target ordit and the lowest
bound 2re given, respectively, by a = 7712.2110
~aa 204 2 = 7712,2110 «204,5.
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NODAL DRIFT AT EQUATOR (iem)

Figure 12. “S" Curves (left limit) +1 km Deadband

DAYS

NODAL DRIFT AT EQUATOR (km)

Figure 13. *S" Curves (left 1imit) +2 km Deadband

Figure 14 then shows theé corresponding average
and minimum maneuver periods, with the maximum
period of 42 davs achieved by the highest bound of
79122110 km. These orbits are also shown in Fig~
ure 11 for cey = 1 mm/s and opp = 2 M. Finally,
Figures 15 and 16 display ellipses of equal maneu-
ver period, as in the previous section, with each
ellipse in the {cex, o0p) SD2Ce, associated with
three numbers, namely the minimum, average (under-
Yined), and maximum periods. For example, for the
=1 km deadband, Tey = 1 mm/s and ogp = 2 m would
result in maneuvers with an average period of 30
deys but with a most severe minimum of 22 days.

Taples 6 and 7 show tne target orbits 2s 2
function of {cexs ogp) 2nd gives also the associa-
ted three maneyver periods mentioned above. These
periods are slightly lower than the ones corres-
ponding to the target orbits of the previous sece
tion for the same {0y, €Qp) COMbinations.

DAYS

S TSNS SR NSRS DU SR NEN SUON SN SO B
.1910 1% 19%0 L2030 L2070 L2010
INITIAL SEMI=MAJOR AXIS (im)

Figure 14. Maneuver Period vs. Initial Semimajor
Axis for Different Nodal Constraint
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Figure 15. Maneuver Tradeoffs (41 km Constraint)
Tabie 6. Target Orpit and Maneuver Period
for +1 km Equatorial Constraint
Canim)
TT‘DD 1 2 3 )
cex m/s
7712.2086{7712.2080|7712,2073{7712.2064
.5 36 34 32,5 30.5
30 42128 42|28 42|22, 42
7712.2065{7712.2062{7712,2057|7712,2081
1.0 30.5 30 29 27.5
23 42122 42{20.5 42(19% 42
7712.2023{7712,2021{7712,2019{7712,2015
2.0 23 22,5 22.3 22
14. 42[14 = 42{14 = 42{13.5 42

It is, therefore, possible to control the
drift of the repeat ascending node by using the
dual targeting strategy presented in the last two
sections, There are, therefore, two target orbits
that must be taken into account according to
whether the transfer is started from the left or
right encs of the deadbdand.
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Figure 16. Maneuver Tradeoffs (+2 km Constraint)

Table 7. Ta.rget Orbit and Maneuver Period for
*2 km Equatorial Constraint

canlm) ,
w 1 2 3 4
c“(mn/s)
.5 51 50 a8 45,5

45 ~ s5Bj42.5 58{40

7712, 2065 | 7712.2062| 7712, 2057| 7712. 2051
46 a5 43.5 | 42.3
3757 58{36.5~ 58[34.F 58|32 s8

i.0

7712.202317712,.2021|7712.201 8| 7712, 2015
38 37.5 37 36.5
25 §8{24.5 58|24 58‘23 58

Conclusion
SonC v

This paper shows the combined effect of the
maneuver execution errors and orbit determination
uncertainties on the maneuver period of the orbit
sustenance phase of the TOPEX spacecraft for dife
ferent equatorial nodal deadband values. Ellipses
of eaua) minimum and average maneuver times are
presented in the (30e,, 30gp) sPace corresponding
+o the cdifferent deadbands enabling the determina-
tion of the appropriate compination of 3cey and
30gp that quarantees 2 mission reouired maneuver
period for 2 given equatorial deadband, through
interpolation.

During each targeting maneuver, the orbit is
circularized even though eccentricity is not a

- factor affecting the nodal drift, because no save

ings in fuel are possibie by delaying the circu~
larization, This is due to the linear growth of e
with time and also to the fact that the changes in
the eccentricity are much larger than the relative
changes in the semimajor axis, which decays only
bv 60 m in 400 deys. Therefore, the total &V = 50
m/s needed for the entire five years duration of
the mission is independent of maneuver frequency.

Finally, it is shown that a maneuver period of
30 davs or more is only possible with cey < 1 mM/S
combined with o, < 2 ™ for 2 deadband of 21 km.
A statistical analysis based on the Monte Carlo
sampling technicue shouid now be possidble to carry

out, in order to obtain 2 more precise evaluation
of the statistical maneuver perioags.

Ltinearize¢ Oprimal Transfer Betweer
Close Coplanar Near<{ircular Orpits

Appendix A:

The transfer solutions used to design the tar-
geting strategies presented in tnis paper are
drawn from the linear theory of optimai transfer
between close cobplanar nearecircular ordits des-
cribed briefly below.

1. General Analysis

Let x represent the direction of periapse in 2
frame centered at -Earth and y compiete the system.
If 2 small 8Y is applied in the direction of the
unit vector £ at position & measured from the x-
axis of the reference, then the changes experienc-
ed by the orbit elements (semimajor axis a, and
eccentricity vector &) are

a8 R

= ZrBe (A1)
e = 1(51,5a + 2£eca) (A=2)
se = *(=8,Cy + 28,3,) {A-3)

T s %% represents the normalized AV with n the
mean motion of the spacecraft and 8, = sg and Bg =
CB' the components of the unit vector g along the
radial and 90° ahead directions in the orbi¢
plane. This reference frame attached to the
spacecraft is the Euler-Hill frame and § is the
angle between § and its 8¢ component. Equations
{A=l)=(A=3) can be derived by using, for example,
the theory of the displacement of the vacant focus
due to 2 small impulsive &Y. In a more compact
form, these equations, linear in T, can be written
as

.A.LI,
4% VAT ;
. se |t |o zj:n(ej)sj
A!yIT
2 8, (Ad)
= sa ZCe
-ce 2:e 55

A multi-impulse maneuver {maximum of three for

this problem) is optimal if and only if there

exists a Lagrange multiplier vector i'= (Ae, i, ,
X

Ae ) such that for each combination of imoulse
y . '
location and direction (B4, 84) used to achieve 2

transfer, the Hamiltonian below is maximum,

HelTMe)s (A=5)
The maximimization of H_with resoect tc 8 requires
that & be parallel to MT(8)% #y, Lawden's primer
vector, which is now a function of @ alone, The



impulsive SV's are tnen applied at positions &
that maximize ;ay; along the iy orientation.

-
11. Evolution of the Primer Vector Ay

Ty is a periodic function in € and its two
components in the r an¢ &€ rotating frame (Euler-
Hill) are qiven by

A 0
(7). (o)X = 2,
A 2/
s -C
e [ EYene [
x \2¢, y \2s

Let g = us and A, = -ulgy with
ex _eo ey 6°

.t 1 Qx
o = tan |- T {A+7)

0 ¢

Y

Then

Ap ® uCo e (A-8)

o
(A=9)

e ® Zxa - 2u50-e°

Several cases can now be considered
1) w40
Ag = 0
Equations (A=~8) and (A-9) describe 2 two to

one ellipse in the (Ar, Xy) freme (Figure A-l) as
8.8, is allowed to increase from 0 to 2z. The

ellipse being centered at the origin,. |[Xy| is max~

imym wnen g ® 2u, Ap = 0, corresponding to 8~dg
= =x/2. The two impulses corresponding to the two
egual maxima of [Ty are, therefore, purely tang-
ential ana seoarated by .180° in true anomaly.

2) us=0
Ke+0‘ .

. Then Zouations (A=8) and (A-9) reduce to Ar *
0 anc ng = 21, indicating that Ty, is indepen-
dant of angular position e«3o with equal prefer-
snce “or &11 points on the orbit as an impulse lo-
cation, the thrust is again applied tangentially,
since i, =0 and [AV|==2h, corresponding to the two

points along the ag axis of the ip, a frame (Fig-
ure Ael).

3) wfo -

2490

fauations {A=8) and (A«9) describe & two tO
ane ellipse as in the first case, but with its
center at {0, 23,) in the {ip, 3q) space. Xy’
reaches its only maximum at ir = 0, Ag
when ‘se3q! = n/2.

= 2{u = 22l
The impulse is applied in the s

O-OO
2u
v,
-5 r / N
. Ap
Ko
-2u 0
AGOO
uyo
4 2 ;I:|
|
l |
| i
2 (uerg 0 I g-g,
I -
A,
ZAG
T \./ Ay
2(m=ry)
-0
0
2 40
wpo
4 e W]
1
{
R *
4 ]
2, 0 2w 6-4,
2, A
lﬁ--
u=0
A A0

Figsure Al, Evolution of Primer Vector



direction (tangentizl) a: position 8-8p = -m(z if
aa > 0 and for Az = 2x + 233 > 0 or_at position
gebg » ¥/2 if A3 < 0 and for g = =2u * 2y < 0

111. Optimal Solutions via Contensou's Spool

ae_ e :
The set of points (A—}/z. -;-x-, -;l) can be
~esolved

into a convex mixture of points on 2 surface cal-
led after the French mathematician Pierre Conten- .
sou (Contensou's spool) consisting of all singie-
impulse points given by (A-10) and shown in Figure
A2,

-1

M

.

Minimum AV Transfer

A‘I
-

fiaure A2. Contensou's Spool.

Between {oplanar Near<Circular Orbit
%1 Ts ch
f—:—"- = sg5g + 2055, (A-10)
A‘:l‘ -85y * 23

Given %, ey, and se,, the necessary and suffici-
nt condition for the minimization of + /minimum-

imoulse) is that the point (28/7, 58X, iey 14e on
+ne convex null of Contensou's spool. The ubper

circle of radius 2 (Fioure Ae2) corresponds to gl/s
= 2 and 2 = 0 {accelerating sV) while the Tower
circle of the same size corresponds to =@/t =
and g = = /decelerating av). By definition of (A
d), the reachable state £ is convex and every

-
-

T
srpit transfer is 2 convex mixture of the two

cases jus:t descriped, namely with = = ¢ anc 2 = <.

There are two types of optimal transfers in
this linsar theory.

Tvpe ] - Nondeoenerste:

It is the Monmann transfer anc Corresponas
to a point 1ike A on the cylindrical hull of
Contensou's spoo! (Figure A-2) and consists of 2
combination oftwo impulses 81 = 0 and 87 = =,
respectively., The firing locations are separated
by * because AV is periodic in & with period =.
Equations (A-10) reduce to

ha 2
" (o - avy)

- z -
de, = oo Cg  (avy +av,) (A-11)

1

Ae -l

y " %, (av, + AV2)

y
4

Figure A3, Firing Geometry

6] is the location of the first impulse angd 62 =
@1 +« the location of the second impulse, The

125 two equatfons of (A-11) give tan gy = F:l'
x

indicating that the impulse locations are along a
line parallel to Ze (Figure A«3), since Ze is
itself inclined at an angle & with respect to the

Ae -
xeaxis with tan ¢ 'KE'X‘ Therefore, 8y =8, in

order to solve for the two &/'s, advantace is taken
of the rotational symmetry of Contensou's spool by
¢ rotation of the reference frame (x, y) through

ae
an angle e = tan=l Fél’ aligning the new x'eaxis
X
with the Ze vector. The magnitude of Ze needs to
Se considered then instead cf the set leyx, de¢y
£11zwing, theredy, the resolution of the impulsive
L7v's Sy reducing {A-il) to the system deiow



L2 2
T B - 8%
(Ae12}

2
de = = E (Av1 . AVz)
Here, the set (9—:-, ey, bey) has been reduced to

the set (5%. ae, D) where

2, .22
e = sgn(e, - e;)ae, + Aey)

RYLU
0 (e

These solutions of Type 1 correspond to sel >
(42)2 anc the overall &V sum is dependent only on
;A8 SO that aV] + aVy = ﬂﬁilael.

Tyoe 1] - Sinaular

These transfers correspond to points like B or
C {Ficure A=2) which are achieved by 2 convex mixe
ture of points lying on the upper or lower circume
ference of Contensou's spool, obtainable in an ine
finite number of combinations all with g = 0
{point B) or g = 7 (point C), according to whether

>0 or < 0. The Hamiltonian being flat, 2ll
pdints on the orbit are candidates for an impul-
sive location. Two-impulse solutions are conste
ructed by Jocating point G along the Ze direction
and such that (Figure A=)

se
7 (ca/a)

{A-13)
y -
[ Ae
ae A -
fo. bs
Y
[]
’
7~
7
s,
x

Tigure Ad. Singular.Case Min. Spacing Between 8V's

7 being the center of the Earth, any line passing
through G intersects the orbit in two points like
A' and 3', which represent the firino locations.

when the line is along A“E™, the impulses are 180°
apart and are of the Hohmann type. The 2ngular
separation between the two imgukes is minimum
when AR is perpendicular to Fa with

-l s
(88) 5, = 2005 l-(—yuj‘ ]

In this gase the V's have equal magnitude aV]
= 2V = 1}’,“—!] while for any other orientation of

line AB, the V's are such that point & i§ their
*center of mass” alegng AB. _The solutions of Type
11 correspond to seé < (A2)2 and the overall av
sum is dependent only on {32 , such at &Vy =&V »
na)ae, 2

i T

2

Figure A«5 shows how the (se, -A%) space is
partitioned into Type I and Type Il zones. The
flow chart diagram presented in Figure (A<5) bran-

> (A3)¢ (Type 1), se {Type 1I). For
Type 1, &nd according to the sign of e, two solu-
tions are shown for each case because the AV's can
be applied in either order and achieve the same
transfer, For Type I1I, solutions are shown in the
flow chart diagram corresponding to an angular
separation of 180° (Hohmann type) both for 44> 0
and < 0. The chronological order of applica-
tion of the two impulses being immaterial, the two
corresponding solutions are displayed once again.

Ta»

1
NON-DEGENERATE

O

a
SINGULAR

7

‘ches out into two main parts, acgording to whether

77

. 1
NONDEGENERATE

Figure AS., Partition of State Soace

For the particular case in which sey = 2ey =
0, e ='0 corresponds 0 2 transfer between two
concentric circles or two similtar, similariy
oriented ellipses. The solutions are of the Type
11 with aV] = aVp » BRARI 1¢ <& 2 0, <he solu-
tions are of Type ! and the aV's are again of
ecual size iVy = sVp = DBfsel. If [nel = (&,
the orbits intersect tangentially, and the trans-
‘er reouires only one imoulse applied at that in-
tersection noint, The two branches of the flow
chars diagram yieid the same solution, This case
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corresponds to Point G given by (A«13) lying on
the orpit and representing the line AB itself
which collaoses to G.

Relative Motion of Two Close
Satellites in Coplanar Near-Circular

rbits

Appendix B.

This brief appendix is used to show the
dependence of the uncertainty in the semimajor
axis on the uncertainties in the radial direction
and the forward velocity. The radial uncertainty
can be attributed to orbit determination while the
velocity error is due to maneuver execution
errors,

Let {x, y) represent the rotating Euler<Hill
frame attached to a spacecraft in 2 nominal
circular ordit, with x along the radial and y
2long the velocity error. Let T(t) reoresent the
ingtantaneous position vector of a second
satellite in a close near-circular coplanar orbit
with 2{t), 1ts relative pogition in the rotating
¢rame. At t = 0, Xo, Yp» Xp» Yo Deing the
components of its relative position and velocity
vectors, its relative motion is described by the
fuler«Hil1 Equations (B=l).

2

Xe2ny - 3n°x=0

. {Be1)
y+enxs=0

Y]
where n = ;3 is the spacecraft mean motion,
with & 1ts ofbit semimajor axis. The solution of
(8-1) 1s given below

y®* — cllt + (__D_ + s‘c)’ﬂt + (yo - -i-o.) > (B‘Z)
- (3i° . Snxo)t . )

For a near-circular orbit it is conventient to
replace e (eccentricity ) and w {arcument of
perigee), the latter poorly defined by

§ = ec, {Be3)

nees, (B2}

On the other nand, the orbit eauation can-be
exoressed in terms of ¢ and n, since



r = a(l -ecost) = a{l ~ecosM) » 0(e?) (B-5)
= a{l «Cpy “nsag) * 0(92)

where £ is the eccentric snomaly, M the mean
anomaly, and wnere

E =M+ esinM + 0(e?)
M= n(t 'tp)
with t, representing time at perizpse. -

Eaquation (B«5) can be used to express the
relative change in semimajor axis with x = ér,

[ X

oy + S.Ec_nt + 6nsp, (B-6)
In order to obtain an expression for §a as & func-
tion of relative initial position and velocity, &¢
and §n must be expressed first in terms of those
same gudntities. The angular position ¢ measured
from the reference direction is given by

g = +M <+ 2esinM « 0(e2)

(B=7)
g » g+ nt +2(Eeny = Nent) ¢ 0(e?)
where 65 =« =~ Ntp.
172 3n
From n s (=%) - &n s - » - 82, SO that
-% 72 (8-8)

2
56 = 88g = % 6—: nt + 2555nt - 25ﬁCnt

But since y = ass, Equation (B-8) and (B-2) can be
equated to give

2y 3x
A (8-9)
Y (8-10)
on = = .
y (B-11)

2_v°
S = -t 4x°

Zauation (B-ll) can also be obtained by
exoressing y » asé and using (B~9) and (B-10)
2bove such that

{ . |
o Beaxs gReax | (8-12)

Tnis eguation shows that the uncertainty on the
semimajor axis is a function of the uncertainty in
the radial direction x and the uncertainty in the
forward veloctty y measured in the EulereHill
frame.
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