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Abstract

For purposes of any precise trajectory predictions
involving perturbing forces, it is - necessary to use
differential formulations either in the Cartesian
coordinates as the integration parameters (e.g., in the
Cowell's method) or in the classical osculating orbital
elements as the integration parameters (e.g., in the
Lagrangian equations). In general, any trajectory
processes that are required to reveal instantaneous or
short—term  variations must wuse the rectangular
coordinates, since the osculating elements of Lagrange's
Equations are simply a convenient perturbation
transformation derived from the original differential
equations ‘of motion in the rectangular coordinates.
However, the Lagrangian equation set does contain
mathematical singularities at zero eccentricity and zero
inclination. For satellite orbits, the rectangular
coordinates and some of the osculating elements are
considered as fast variables and therefore require very
small integration steps in order to account for short—term
or instantaneous variations of the integration parameters
at the expense of very long integration time. The
harmonics analysis of the gravitational perturbation
potential used in the satellite equations of motion is
originally obtained in rectangular coordinates and
therefore is well-suited for applications either in the
rectangular coordinates of Cowell's method or in the
osculating elements of Lagrange's Equations after tedious
series transformations of the perturbing potential in terms
of the oeaculatin§1 elements. For preliminary satellite
mission daigns, owever, it is not cost—effective to use
such costly time—consuming integration programs.

By using Von Zeipel's generating function
procedure to average the perturbing Earth gravitational
potential, with respect to the {fast variable (mean
anomaly), a set of “fictitious" mean orbital elements is
obtained that is shown to be a function of the nonlinear J3,

(square of the 2nd zonal harmonic coefficient) term. On
the assumption of appropriate conversion from a set of
"fictitious” initial mean elements to an equivalent set of
initial osculating elements or vice versa, we have demon—
strated that the long—term orbit prediction using the
"fictitious” mean elements is a3 accurate as that using the
osculating elements, but has a computing speed about two
orders of magnitude faster. .

If the J4, terms were neglected in the mean orbital
elements approach, the accur of the approach is
decreased by about two orders of magnitude due to the
effect of missing J§, terms.

For short—term orbit predictions, the osculating
elements approach must be used.

*The research described in this paper was carried out at
the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Aeronautics and Space Administration
+Member of Technical Staff

L Introdyction

For any preliminary mission designs for either
interplanetary or Earth satellite missions, software tools
that are not only efficient and cost—effective but also
adequately accurate are preferred rather than those
high—precision software programs that numerically
integrate trajectories at the expense of extremely long
integration time, as well as high cost.

In interplanetary cases, preliminary mission designs
usually have been carried out by employing simple conic,
atch—conic, or multi—conic approximate methods.
ently, Jet Propulsion Laboratory (JPL) developed the
single-step and multi—step Plato[l] programs that
combine the multi—conic technique with the minimization
of total impulsive AV for multiple—flyby trajectories, with
constraints on flyby parameters and maneuver times. The
Plato programs, in general, give adequately accurate
preliminary design trajectories. A final high—precision
numerical integration program is always used either (g to
verified the accuracy of the preliminary design, or (b) to
fine—tune the preliminary design to the prescribed
accuracy.

For Earth satellite missions, most preliminary
mission designers have been using high—precision
numerical integration programs (in osculating orbital
elements or Cartesian coordinates) as their design tool, at
the expense of high cost and very long preliminary design
time spans. In fact, some preliminary satellite mission
designs (e.g., frozen orbit designs) can not be accomplished
satisfactorily in high—precision programs in osculatinf
orbital elements (to be explained later). Recently, JP
has developed the SAMDP program(2] in fictitious mean
orbital elements, and the LOP program(3] (same as
SAMDP but more efficient due to coding streamlining).
LOP is extremely well-suited for preliminary satellite
mission desi in the sense of cost—effectiveness, and
especially so for frozen orbit designs at or near the critical
inclination. ~ When ‘done properly, programs in mean
elements eliminate the nodal-to~nodal short—term
periodic variations without a.ffectin§ the long—term orbit
prediction accuracy. Because of the elimination of
short~term variations, LOP can take long integration
steps (in tens instead of hundredths of revolution) without
introducinﬁ integration errors. - However, comparisons of
results of long—-term predictions from the LOP program
with corrwpondilrzli results from the high—precision
ASAP[4] or DPTRAJ([5] programs show some significant
deviations. It is the purpose of this paper to trace the
cause of deviations and to reformulate the LOP in such a
way that the deviations are reduced to an acceptable,
prescribed, vanishing minimum.

The method of formulation in the LOP program in
mean orbital elements is basically that of Kaula(g],
together with a transformation to eliminate the
“mathematical singularity" at zero eccentricity in the
Lagrangian equations. In an averaging process for
perturbing gravitational harmonics via mean anomaly in
order to express the Lagrangian equations in terms of
mean elements instead of the original osculating elements,
Kaula and thus the LOP program failed to include the



dominant non—linear harmonic effect (J3, for Earth) into
the formulation.

The following section will attempt to explain the
necessity of J3, terms in the mean elements Lagrangian
equations and to show briefly how to obtain the J3, terms
in the Lagrangian equations for purposes of integration.

I1I. Theogretical Formulations

The Lagrange's planetary equations‘in osculating
classical orbital elements are:
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where R* i3 the instantaneous disturbing potential of an

aspherical planet and is expressed usually in terms of

spherical coordinates, as shown in Equation (2) below.
Kaula[6] has transformed it in terms of the classical

osculating element coordinates a, e, i, w, R, M (or f), as

shown in Equation (3) below.

o ! 00 ] R !
o] 1Vme ) ] A ryeme
{=2 m=o0 {=2 m=o0
[(C m Cosm)) +§ thinm,\)] (2)

¢l o0 -
¢
Vaffl}%r ) F g z Gq(® Stmpq

p=o0 q=—00
(M, 2,9) . @3
where
C {—m even Cosl(£—2p) (t—2 |
= | osj({—~2pjw+ ({—2p+q
s[mpq - [ Stm]
{—m odd
M + m(Q — 9)]
{—m even
+ [ $tm Sin[(£ = 2p)w + (¢—2p + )
& J 4 m odd

M +m (Q - 0)] (4)

Re i3 the equatorial radius of the Earth or any
planet,

is the hour angle (Greenwich Sidereal Time)
of the satellite in question.

and ©

For purposes of any precise trajectory predictions
involving perturbing forces, it i3 necessary to use
differential formulations either in the rectangular
coordinates as the integration parameters (e.g., in the
Cowell's method) or in the classical osculating orbital
elements as the integration parameters, as shown in the
Lagrangian equations in Equation (1). In general, any
trajectory processes that are required to reveal
instantaneous or short—term variations usually must use
the rectangular coordinates, since the osculating elements
of - Lagrange's E?uations are simply a convenient
perturbation transformation derived from the original
differential equations of motion in the rectangular
coordinates. For satellite orbits the rectangular
coordinates and some of the osculating elements are
considered as fast variables and therefore require small
integration steps in order to account for short—term or
instantaneous variations of the integration parameters. In
Equation (2), the harmonics analysis of the gravitational
perturbation potential R* used in the satellite equations of
motion is mathematically exact in the instantaneous sense
according to the general potential theory. It is originally
obtained in rectangular coordinates- and therefore is
well-suited for applications either in rectangular
coordinates of Cowell's method or in the osculating
elements of Lagrange's Equations after tedious series
transformations of the disturbing potential in terms of the
osculating elements. The integration of the equations of
motion in either rectangular coordinates or osculating
elements demands s integration steps to obtain
instantaneous or short—term precisions at the expense of

- excessively long integration time for general applications.

For preliminary satellite mission designs, it is not
cost—effective to use such time-consuming integration
programs as ASAP or DPTRAJ. The method of using a
set of "ictitious" mean orbital "elements for orbit
long~term predictions is a way to obtain cost—effectiveness
at the expemse of missing the short—periodic accurate
information.

In order to remove the fast variable, the mean
anomaly M, and thus obtain the "average' or "mean"
long—periodic and secular terms of a satellite trajectory,
the instantaneous disturbing potential R* is "averaged"
with respect to the short—periodic variable M from 0 to 2.
It can be shown that this averaging process is
mathematically equivalent to setting the coefficient of M
in Equation (4) equal to zero; i.e.

q=2p-! (5)

Thus the averaged R* is independent of M now.
Accordingly, the orbital elements a e, i, w, {1, and M in
Equations (1) are no longer osculatinﬁ elements, but
become "fictitious” mean elements when R* is an averaged
perturbing potential. From this point on in this paper, we
shall assume R* is the averaged one!

{-2p+q=0 or

The Lagrangian equations (1) contain mathematical
singularities both at e = 0 and i = 0. For most
Earth—observing satellites, inclinations are usually high
enough to have global coverage of the planetary surface
and thus singularities at inclinations at or near zero are
rarely real problems. Circular or near—circular orbits are
usually prex%rred for planetary satellites. To eliminate the
singularity at zero eccentricity in Lagrange's Equations,



the following transformations of variables from e and w to
h and k are introduced:

Jh=esinw
k = e cosw (6)
A new variable, ’\N’ called "stroboscopic mean node" is

also introduced to replace the variable M. Equations (1)
then are transformed to the following new set of planetary
equations in terms of the mean elements a, b, i, k, @, and
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and P and Q are relative prime integers and P/Q
approximates the number of orbits per planet
revolution. .

Note R (a, b, i, k, 9, AN) is the transformed disturbing

potential function of the averaged R*(r, ¢, Aor a, e, i, 2,
w, M) of Equations (2), (3), and (4) together with the
constraint £ — 2p + q = 0 of Equation (5) such that the
short—term periods have been removed. The solutions of
Equatioas (7) are supposed to yield correct "mean" orbital
elements containing only the secular and long—periodic
terms. However, because of the reasons to be explained in
what follows, solutions of Equations (7) are not as accurate

as they should be due to the missing nonlinear effect J3,
terms in the averaged disturbing potential function R* or

For integration with respect to mean orbital
elements, the conventional harmonic potential expansion
(such as in Equations (2) or (3)) alone is no longer
appropriate or adequate, because the expansion is in a
form to be used exclusively for osculating elements. When
mean elements are used as the variables for integrations,
correct or accurate approximate solutions can be expected,
in general, in two lines of thoughts. Firstly, we can
express the system Equations (1) as

& i(t,0), (t0) = Xo(€o,WoriosetC) (8)

where the small parameter ¢ is of the order of the
dominant J, in the case of Earth. A power series solution

in € can be obtained for the system Equation (8) via
successive iterations, and thus the ¢2 term will appear as
the largest correction term. This method, however, is too
complex and impractical to be carried out mathematically.
Secondly, we can expand the conventional disturbing
potential expression for osculating elements in a Taylor
series expansion about the mean elements, thus the J3,

term will also appear as the largest correction term in the
series expansion of the potential. We have not tried this
Taylor expansion method here due to its complexity, but
note that Brouwer's{7] transformation of the original
Hamiltonian (use only zorals) by Von Ziepel's method of
generating function in Delaunay variables is, in fact, an
averaging method, and thus is very akin to this expansion
method about the mean elements. Accordin§ly, we will
make use of the same Von Ziepel's method of generating
function to obtain the average disturbing potential that
includes the sought— after nonlinear J3, terms in the case

of Earth. For other planets the dominant perturbing
harmonic might not be J,g but J,q, for example, and thus

the sought—after nonlinear terms would be those with Jj,
instead of J3;. For Earth's case the magnitude of Jj, is
comparable to J,, and thus can not be ignored for Earth

satellite missions. This i3 especially so for the
TOPEX/POSEIDON mission, due to its extremely
stringent measurement accuracy requirements.  The
approximate analytic average (or mean) elements solution
of Brouwer two limitations: (A) confined to
applications for zonal harmonic up to Jg, only, and (B)

singular solutions at or near the critical inclination due to

his inappropriate approximations & = A (instead of the

exact relation ¥ = by + Cul), where &, @
respectively, the rate of change of argument—of—periapsis,
secular rate of change of argument—of-—periapsis and
long—periodic rate of change of argument of periapsis.
Because of the approximations, these analytic solutions of
Brouwer have not been widely used for long—term orbit
predictions.

and d.:l are,

The Von Zeipel procedure as a method of averaging
yields a set of differential equations in mean elements a, e,
1, , w, and M via an average disturbing potential exactly
as those shown by Kaula[2] except the J3, terms that are

present only in the Von Ziepel's method of generating
function. = Without repeating main portions of the
differential equation set that represent the well-known
conventional linear perturbations due to harmonics of all



degrees and orders, we show below only the sought—after
nonlinear J§, portions of the differential equation set:
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and A, C, E, and G are coefficients of long—periodic terms
d B, D, and F are secular terms.

It is extremely important to note in Equations (9)
that all the primed orbital elements are a function of the
argument of periapsis w. The primed differential terms of
Equations (9) are to be added to Equations (1) in averaged
form such that the combined set will include the nonlinear
J3, effect in the propagation of mean orbital elements of a,

e i, O, w, and M, with the understanding that R* in
Equations (1) does not include J3, terms.

Since we use the nonsingular (in e only) set of
Equations (7) for integration purposes, we must also
transform the set in Equations (9) from e, w, and M
variables to b, k, and AN variables also. To that end, we

need the following additional identities to carry out the

conversions:
sin 2w = 2hk/(h? + k?)
(10)

cos 2w = (b2 — k2)/(h? + k)

dh' _ hde' do'

dt _EET'H(HT

dk' _ k de' do! .
EIIE':'EHT—hHT (11)
d\y _ 1 [dM', dw da!

dk _SZ[HT+HT]+ET

Combining Equations (9), (10), and (11), we have
expressed dh’/dt, dk'/dt, and d,\r:,/dt. in terms of h, k, and

Ay- When these dh'/dk, dk'/dt, and dAy/dt are added,
respectively, into dh/dt, dk/dt, and dAN/dt in Equations
{7), we have a complete set of differential equations for a

_satellite trajectory propagation in mean orbital elements

that includes the sought—after nonlinear J3 effects, with

the understanding that R in Equations (7) does not
contain Jj, terms. This complete set of differential

equations will be used in the numerical integration
program (called LOPJ2S(8]) for long~term orbit
predictions in mean orbital elements, with a
cost—effectiveness that i3 orders of magnitude higher than
the cost—effectiveness of a numerical integf‘ation program
in rectangular coordinates such as ASAP. The accuracy of
LOPJ2S 'is accurate enough for most satellite mission
preliminary designs, even for the TOPEX/POSEIDON
project that require an OD accuracy of abut 15 cm.

We note here that LOPJ2S results are excellent but
still are approximate in the semse that LOPJ2S only
includes the nonlinear term J3,. In theory other nonlinear

terms such as Jyg*Jpo, where n = 2, 3, 4, . . ., should also
be included in the differential equations. Due to the fact
that Jag >>>Jy0 for Earth we conclude that the nonlinear
effects of these cross—product terms are too small to be
considered, in addition to the reality that it is extremely
difficult to have these cross—terms derived.

L. Sample Accyracy Verification
Via Tioipg C :

Before we make accuracy checks of long—term
predictions of the LOPJ2S program in mean elements with
respect to the high—precision ASAP program in osculatin
elements (via cartesian coordinates), we must first de
with the important and practical fact of converting the
initial mean elements into the corresponding initial
osculating elements, and vice versa. = The detailed
mathematical formulation of the conversion technique is
documented in Reference [9] and will be the subject of a
future paper. It is sufficient to mention here that the
coaversion has a second—order accuracy in the sense that
conversion is carried out with the effects of geopotential
harmonics of Jyg, 39y J 49, a0d the nonlinear J§, which has

about the same order of magnitude as J,,. In general, the



. Since ASAP

second—order conversion is accurate enough to assure that
the two sets of initial conditions are equivalent such that
long—term orbit prediction comparisons between LOPJ2S
and ASAP jprograrn become meaningful. If a first—order
(with Joq effect only) conversion method is used the same

comparisons usually give results that are erroneous and
very difficult to interpret. We have demonstrated in
Reference [9] that the second—order conversion technique
improves at least an order of magnitude in conversion
accuracy over the first—order conversion technique.

Since we claim that the J3, effects in the LOPJ2S

program contribute significantly in long—term orbit
prediction accuracies, the goal of our comparisons is to
show that the agreement of corresponding results between
the LOPJ2S program in mean elements and the
high—precision ASAP program in osculating elements is at
least an order of magnitude better than that between the
LOP program (with no J3, effects) in mean elements and

the ASAP program.

We propose to use the "timing deviation" at the
nodal point (argument of latitude u = w + f = 0) of a
prescribed revolution (say, at 100th or 10,000th
revolution) as the criterion to determine the relative
overall orbit prediction accuracy of the LOPJ2S (or LOP)
program with respect to the ASAP program. For example
if the timing deviation is only a few seconds at the nodal

point of 1000th Rev (each nodal period is 2 hours, say) and’

the nodal deviation 18 only a few hundredths of a degree,
we shall consider the comparison is almost perfect in such
long—term orbit prediction in mean elements.

The results of two sample calculations will be
shown. The first one is for a frozen orbit in the vicinity of

the critical inclination angle since such an orbit is very’

similar to the future nominal TOPEX/POSEIDON orbit
to be selected within the next few months. The second one
is for a nonfrozen orbit at a relatively low inclination angle

in order to show the applicability of the LOPJ2S program
in a variety of orbit selection processes. Each sample
computation (using zonals from Jyo through Ji3p) will
compare three long—term trajectory prediction results from

(A) LOPJ2S program with J%y, (B) high precision ASAP
program, and (C) LOP program without J3,.

(1) FROZEN ORBIT SAMPLE COMPARISONS:
(1A) LOPJ2S run in mean elements

Strictly speaking, the concept of the
so—called frozen orbit is valid only in terms
of "fictitious” mean orbital elements in the
sense that the average semi-major axis,
eccentricity, and argument—of—periapsis of a
satellite orbiting an aspherical planet remain
constant during a long~periodic cycle, since
the osculating orbital elements of such a
satellite always vary instantaneously from
point to point in a short—periodic manner.
For initial mean elements of a, = 7713.14

km and i} = 64.82 an Earth satellite under
the disturbing barmonics of Jz9, through
Jiae, and J3g, an argument—of— periapsis o,
= 270.00 and an eccentricity of e, =

0.00073506 are required, in order to
maintain a true frozen orbit. We arbitraril

choose Node ' = 0.0° and true anomaly

= 90.00. Here the primed quantities denote
mean elements. The long—periodic cycle of
the frozen orbit is about 19,200 revolutions
or 1498.57 days with constant ¢' and &', as
shown in Table 1A from the results of orbit
predictions of the LOPJ2S program that

includes the J3 effect.
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(iB) " ASAP runin osculating elements

requires osculating orbit
elements as input, it i3 necessary to
accurately convert the mean orbital elements
of case (1A} into osculating elements. This

agorakm  e,ore,

0.0000000  359.82991  -0.170(B%
-0.000001 291.9%6415  -0.17008%
0.0000R 223.9280 -0.1X08%
0.000C0L  155.89244  -0.170B%

0.0
89.99998
89.959%
89.999%

3.031429
23.2726
35.167562
217.06299%8
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0.00X00 -317.68505 -0.100B%
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90.00006
90.0000%
90.00R
90.0000

.y .
igoril,

conversion aided by the recent accurate
"second—order" conversion technique pre—
sented in Reference [9] is shown below:
(lst—order elements listed also for
comparisons)

Q) or Q,

I '
Wy, O W, fyorf,

0.00073506
0.00107267
0.00079586

mean 7713.14000
osc (2nd) 7720.15906
osc (1st) 7720.15288

64.800000
64.812250
64.812250

90.00000°
61.958520
50.687050

270.0000°
298.04159
309.31240

0.00000°
—-00107°
—.00007¢



The primed quantities denote the mean
orbital elements. Note that for mean orbital
elements the choice of initial true anomaly fj

{or mean anomaly My) is entirely arbitrary

since by definition mean elements are
obtained by averaging with respect to the
mean anomaly. Table 1B shows the
osculating elements propagation resuits from
the high—precision ASAP program.
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18000 1218483.5662 770,160 (QOW097S7 6481225 178,38947 X0L.76666  .EL5A-05 296,310 238405 6743.5807 -.61d-0%
1500 1240A1885. 8468 7720.1506%2 .QOLOS110 64.81225 110.353% 300.39%45 125405 118.402%2 - 13305 6743.5808 0504
18800 126779318.1377 770.150427 .COIOEISS 64.81225 42.31765 299.050%  .401d-05 X00.294lLL 496306 6743.5806 -.183d-03
OOI0690 6481225 T%.281% 297.77137 . S6ld-05 122.18%7 -.7Bd-06 673.5806 -.18%-03

19200 12%7670.4325  7720.158965

(1C) LOP run in mean elements

In order to see the J4g effect more clearly we
also input the same initial mean elements.

TARE 1C.  FROZEN CREIT RESULTS FRQY 1P (MEAN EXRMENIS)

from Table 1A into the LOP program that

does not consider the J3; effect. The results
are shown in Table 1C.

(U TR Iy, 10 )

£ =7713.140 B =-0.00735. 0~ 6. .80 NE- 0.000000

W= 20000 R=- 9%.000
REVN0 TDE,SEC NIELFERKD [ELNP. HCE APV TA IQGACNIE SEE)N-SI NIE [ELNIE
1 6K3.5790%2 6763.5790:2 0,000000 0.00073S1 2%9.99998  90.000R  3.08409  0.000000 39.82989 -0.10107.
WD 269763L.616688 6763.575042 0.00COO02 0.C0073S1 269.9716 S0.0078%  Z213.264%4  -0.00000L 291.95714 0.1:0107.
B0 SI8EI.ZZUL 6763.579062 0.0000002 0.000730 2639846  90.015%  35.15199%8 0.00000R 223.9428 -0.101071
100 80922%.850167 6743.575042 0.0000003 0.00073%0 269.97A2 90.02298  217.039652  0.00C000L 155.8712 0.101071
18000 121386422, 750649 6763.5750K2 -0.C000CL 0. Q007350 Z70.02154  89.97846  2%6.32145  0.0000000 -181.92863 -0.1M01071
1800 100818367258 67%3.57%042 0,0000000 0.0007350 270.01406 85,9655 118.208799 0.000000R2 -249.97149  -0.1701071
18500 126779285, 963995 6763.57042 0.0000000 0.(007351 Z0.0069  89.99371  X0.09%64s3  -0.0000L -318.0L% -0.101071
19200 125676717 600560  6763.579042 0.000C00L 0.000735L 263.99645 90,0015 122984107 0.0000X0 -26.0570 -0.171071

"In Tables 1A through 1C -the nodal revolution
number is the independent variable. To avoid ambiguities,
the revolution number is defined here. We always start

with the initial zeroth Rev which always contains the -

initial conditions (whether starts at the node or not) and
ends with the first nodal crossing. Accordingly, for the
first Rev the time in these tables is the start (or the end of
the zeroth Rev) of first Rev. The frozen orbit in Table 1A
for the LOPJ2S run has constant mean eccentricity e and
argument—of— periapsis w with a long—periodic cycle of
about 19,200 revs or 129, 476,708.69 sec. (1498.5730 days).
The nodal period remains absolutely constant during the

whole long—periodic cycle at 6743.578578s. At the end of
the long—periodic cycle (i.e., at the start of the 19,200th
REV), the satellite is at the ascendin node point at O =
334.27910. The column header with "S(REV)-S," denotes
the deviation between the current fundamental interval
and the first fundamental interval, thus, we observe the
fundamental interval also remains constant throughous the
long—periodic cycle.  The last column "DELNODE"
denotes the deviation of the current node from the
preceding node, and thus the node regression per
revolution remains constant also throughout the
long—pericdic cycle.



In Table 1B for the ASAP run, we note a and i
columns are, respectively, almost constant and the column
w + f = u is nearly 360.0 or zero, because each and every
line is at a nodal point. In addition, the eccentricity e goes
through a periodic cycle from the initial value to the
minimum and then rises back to the initial value. At
19,200 Rev the time is 129,476,750.43¢ (1498.5735 days).
Nodal periods are almost constant at 6743.58068 with an
average deviation of about 0.00035.

Table 1C has the same format as Table 1A and
thus needs no further explanations. We note, however, in
Table 1C that the mean argument—of— periapsis,
eccentricity, and nodal period are not as constant as those
in Table 1A, because the initial mean eccentricity in Table
1C is obtained from that of the true frozen orbit with J%,

effects in Table 1LA.
The comp.uting speed of either LOP runs or

LOPJ2S runs is at least two orders of magnitude faster
than that of the corresponding ASAP run.

The table below - should summarize the salient
points from Tables 1A, 1B, and 1C for purposes of
convenient comparisons:

TIE FROZEN ORBIT CASE

REV. TIME PERIOD NODE LONG. ASC.
NO. sec sec deg NODE deg.
LOPJ2S 19,200 129,476,708.693  6743.57857 334.2791  122.4576
(1498.5730 days)
ASAP 19,200 129,476,750.433  6743.58060 334.2317  122.18G59
(1408.5735 days)  6743.58074, avg
LoP 19,200 129.476,717,600  6743.57904 333.0428 121.9841

(1498.5731 days)

At the same nodal point at the start of 19,200th Rev, we
obtain from the above table the following deviations of
LOPJ2S and LOP results with respect to the precision
ASAP result:

THE FROZEN ORBIT CASE

TIME,sec  PERIOD, NODE,deg LONG ASC.
(at 19,200th Rev)  sec ! NODE, deg
LOPJ2S devialions  ~41.74 ~0.00217 =0.0026 0.1717
(avg)  (~0.29 km) (19.11 km)
LOP deviations -32.83 =0.00170 -0.3389 —0.2018
(avg) (=37.73 km) (—22.46 km)

From the above table we observe in this sample case for a
frozen orbit that the most significant improvement of

LOPJ2S over LOP is in the node parameter due to the J¥
effect, since the node deviation between LOPJ2S and
ASAP is almost vanishing (-0.00269), but that between
LOP and ASAP is —0.34o. Thus, it shows that the
improvement of LOPJ2S results over LOP results is at -
least two orders in magnitude. This is important in the
inertial frame that the cross—track deviation is almost

eliminated due to the addition of the J§; effect in LOPJ2S
to obtain correct rates of nodal regression or progression.
In the rotating meridian frame, the deviation of the
longitude of ascending node between LOPJ25 and ASAP
and that between LOP and ASAP are about the same in
magnitude but opposite in direction. It thus appears that
in this case LOPJ2S might not have offered anyu
improvement. To resolve this dilemma we look into
timing deviations for help. Note that timing here is
directly related to nodal periods which are in turn closely
related to the accuracy of initial orbital elements
conversions[9].  Any slight inaccuracy in an initial
conversion will be reflected in nodal periods and thus later
in timing. In order to match the longitude of node from
LOPJ2S to that of ASAP, the LOPJ2S timing must be
increased by 41.74s in 19,200 revs. In 41.74s the Earth will
rotate exactly 0.1717¢ (19.11 km) and node will shift only
about 0.001°. This means that LOPJ2S, in order to
correct the timing error of 41.74s, would require a nodal
period incre se of 0.00217s which might be achievable by
including harmonics higher than J4o in an orbital elements
conversion method, i.e, by a third—order conversion
method which might not be accomplished in practical
sense due to the extreme mathematical complexities
involved and to associated unrealistic length

computations. This whole illustration here is to show (a{
our clear understanding of the problem, and (b) that the
accuracy we have achieved in reality now by the
second—order conversion method{9] is sufticiently accurate
for most satellite mission design purposes. The reason is
that we are using here a sample illustration for a frozen
orbit with a long~periodic cycle of 19,200 revs (1498.57
days). In practical cases, only one hundred days or so are
needed before a maneuver is necessary to correct orbit
parameter deviations due ta other small perturbations
resulting from such sources as the non—gravitational force
of atmospheric drag. For one hundred days or so the
cumulative error due to the use of LOPJ2S without drag
is, in gemeral, negligible. In fact, we repeat that the
extremely small deviations between LOPJ2S and ASAP
here after a long duration of trajectory propagation are
entirely due to slight errors in the initial orbital elements

" DNEE 1D, FROZEN CREIT RESATS FROM I(RJZS (MEAN ELBMNIS)

(Jmumm:mmﬂm), (a INCREASED BY 1.56 m TO MATCH RESLLIS (F THE ASAP IN TAH(E 1B)

We Z0.000 B= 90.000

) =T7T3.116 D=

Q00735 D= 64,300 NIE=

0.000000

FEVND IDESE NIELBERED DELNP. ECE APV TA IQCACNIE SERV)-SL NIE DELKIE

1 6763.5807%1 6763.580761 0.C000C0 .QOO7351 Z0.00000  90.00000  3.03140  0.0000000 359.82%9L - 108%

W0 29MIR. 20632 673.580761 OO .QOO73SL 269.9560 .00 Z3.26E%0  -.0000L SL.9A18  -.1708%

800 5394864592625 6X3.50761 .OXOOR (007351 269.9992L .00 35160061 0o 223 2835 -.1A0B%

120 809229%.6890 6743.580741 .COOOOR .QOO7351 269.99683 90.0017  217.05241 00000 155.89253  -.1A0B%

" 18000 121380453.3327  6743.590761 .02, QOO7351 2000109 89.9989L 296509955 Q0o -181.61204  -.1XCB%
1840 12:081885.630335 643.58074%  .COOOCOL .QOO735L 270.Q0071  €9.99929  118.401806 - QOOO0L -249.64786 - 1A0B%

18500 126779317.926605 6763.590741 .COO0O02 .OOO735L 270.005L 89.99969  X00.293656 000000 -317.68368  -.17008%
6743.59071 Q00002 .COO735L 259.99991  90.00009  122.185506 oo -5.71951  -.1X08%

1920 129476750,22295%6



conversion, and there appear to be no detectable errors in
the mathematical formulation of including the J3 effect in.
LOPJ2S. It will become even more evident in what to be
shown in the next paragraph.

In an effort to demonstrate the situation, we shall
increase only the semi—major axis a of Table 1A for
LOPJ2S 1.556 meters from 7713.14 to 7713.14156 km in
order to increase the period slightly (0.00217s) such that
the LOPJ2S timing will catch up with the timing of
ASAle The results come out as expected and are shown in
Table D.

The comparison between results of Table 1D from
the LOPJ2S run and those of Table 1B from the
corresponding ASAP run at 19,200 Rev are tabulated
below:

REV. TIME PERIOD NODE LONG. ASC.

NO. sec sec deg NODE, deg.
LOPJ2S 19,200 129,476,750.223 6743.5807 334.2805 122.1855
ASAP 19,200 129,476,750.433 674J.3807 334.2817 122.1858

(Avg)

The perfect matches between LOPJ2S (with adjusted
semi-major axis) and ASAP trajectories for every
parameter in the above table are truly remarkable,
especially for a duration of one long—periodic cycle of
about 1500 days. In general, for frozen orbits the
agreements between LOPJ2S and ASAP are accurate
enough even without slightly adjusting semi—major axis a
if the duration of trajectory propagation is a small fraction
of a long—periodic cycle.

Figures la and 1b show, respectively, the delta node
and delta longitude of ascending node between Table 1B
for. ASAP and Table 1D
long—periadic cycle.

for LOPJ2S for a complete

(2)—NONFROZEN ORBIT SAMPLE COMPARISONS:

(2A) A nonfrozen orbit with initial mean arbital
elements a' = 7711.92 km, e' = 0.00154025,
i' = 24.00, and ' = 0.0° is run by the
LOPIJ2S program. The pro a%z:)tion results
of the long—periodic cycle of about 44 days
are shown in Table 2A which indicates that
e' goes through a cyclic change and «' goes
through a 360 variation in one long—
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Fig. 1a Delta node between LOPJ2S and ASAP.
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Fig. 1b Delta longitude between LOPJ2S and ASAP.

periodic cycle. Note at the 500th Rev in
Table 2A the time is about 38.84 days Also
pote that due to monfrozen nature of the
orbit, the nodal periods in Table 2A is no
longer constant but varies in a long—periodic
manner with a one half of a long—periodic
‘cycle at about the 283rd Rev (almost 22

days).

TARE 2A.  NINGREEN (RBIT RESULTS FROM ICRJ2S (QMEAN ELBMENIS)

(g THRATH Iy, VI S0

We 9.0 = 180.00

REVIO TDESE NIELFERID IDELNP. BEXE

AP W

"0 = T71L.9X0 B =0.001%2 D= %0000 NIE- 0.00000

TA [OGACNIE SEEV)-S1 NIE [ELNIE °

-

1683895877
0 VUELUAP
66710.166397
101318.859776
1339037, 614768
1675556 804887
W11576.678%
AT 55788
263918, 37950
2009, 706068
16160, %0BH  6722.418379  0.018589

672386131 -0.0136491

BEBEEBBEER

0.001%@2 01172
0.0014S61 113,190
0.0013669 137.729%6
0.0011722 164.68068
0.0009503 196.39307
6722.38990 0.00080AL 0.0007725 237.238719
0.0007%3 285.6919
0.0008760 329, 9087
0.00109%  4.55%7
0.001027 32.9207
0.0014586 58.11893

269.88276
26,8010
.27
195.3192
163.40653
12,762

76,3861

0.0513
3556673
27.09%
3088107

%.249576 359,983

.00 -0.0000580 Xl.97%42 -0.3655771
§7.641671  -0.0001013 32.67659 -0.36597€0
10681389  -0.000LM X56.377&2 -0.3659751
1218605 -0.00009% 287.0908 -0.3659746
19.556351  -0.0000AS 268.7803 -0.3659748
16.98846  0.00017S 250.481% -0.365975
176,280  0.0000%0 2X.1X7P -0.3659766
19165043  0.0001081 213.8093 -0.3659777
29.0116% - 0.000W097 195.585@0 -0.3655785
263771 0.0000763 177.28610 -0.3659787



(2B) To obtain the corresponding osculatin, ajorakm ejore,  iyori, Qgorfl, wjorw, forf,
elements propagation from the ASA mean 771102000 0.00154025 24.000000 0.05  90.0°  150.09
program, the 2n —order conversion from the  osc thd) 7710.49842 000085610 23.938240 0.0° 90.00  150.00
‘nitial mean elements from Table 2A to a ¢ 1st) 7710.49165 0.00085778 23.98813° 0.0° 90.00  150.00

corresponding set of initial osculating
elements according to Reference (9] is
tabulated below: (lst—order elements are
listed also for comparisons)

The osculating elements propagation (rom °
the ASAP program is shown in Table 2B.

TARE 28.  NONEROZEN CREIT RESLLTS FRQM ASAP (CEC. EIRMNIS)

(U THROTH Jyy, INITTAL MEAN ETEMENDS:

2= 7711.92 k, €} = 0.0015:025,

1= %P, mey=00", wa=9.0°% £=-180.0%

0 DEIAEINWF= 77104980 0.0X8%10 23.98%0

T,SEC A E I NIE

g

0.00000 $0.0000 10,0000, ASC. NIE ERINT BEIGY

v WE

16 [EIAS N.P.  [EHIAN

771337891 0.00IEXX0
7713337818 0.0043%8
7713130566 0.0X0921%4
7713.328516 0.00B410
7713.332278 0.00R8X0
771330732 0.00086378
7713351353 0.00138568
7713.360959 0.0018047
7713366665 0.C020BLT3
7713.365752 000220187
7713.361193 0.00215%

1683.9028
11061067
667199 9426
1003718.5180
133937.1555
1675556.2279
2011675.9786
247796 4465
2683917 4564
3200386630
31561596882

BEBHEBBEB,,.

To see the effect of missing J% terms in
LOP, we use the same initial mean elements

—
)
Q

<2

%.01185 3%9.906% 57.3%738 0.X%E-10 %.269%6
%.01185 197550 73.742%
201186 33.67677 91.30077
%.01197 250.47963 39.22%
%.0119% 23.88155 2.4532
2.01191 195.5826 13.8060
%0187 177.28331  35.1475

0.121E5 70.07105 O.LAEC. 6722.383% -0.138-01
0.7AE(5 87.4209 0.10E-3
0.106E05 106. 81452 0,988E-04
0.411E-05 122.18674  0.89€E-04
0.234E-04 139.55721. 0.388E-0%
0.12E-05 156.92485 -0.129€-04
0.1196-05 174.28952 -0.806E-0h
0.81E-05 19165192 -0.111E-B
0.122E-05 209.01%5 -0.111E-B3
0.1SE<B 26.37575 -0.90E-0

672,370 0.2%-0L
672,306 -0.26%-01
672.37% -0.25E-0L
6722.3876 -0.98%E-QR
672,023 0.491E-Q2
672.4157 0.18%E-01
672.62% 0.25%-0L
672.62% 0.26ZE0L
672.4160 0.18&-01

from Table 2A and obtain the LOP
propagation results shown in Table 2C.

TEE . NINRZEN CREIT RESUTS ERM LP QEAN EIRENIS)

(g TR Iy, 10 7o

W= 9,000 0~ 150,000 A=7711.920 B =0.0052 D= %000 NIE~ 0.0000

RN TRESE NIELERID DELNP. BXE ARV TA IOCACNIE SE)-S1 NIE DELNIE
1 1390570 0.00I1562 90.11680 269.88320  %.24573 3%.9833
0 33L083.09964 6722.425509 -0.0135655 0.0019E2 11311085 2%6.8835 N.106% -0.000576 32.0W7L 0.36517%
D 6T L3777 672.615846 0036291 0.0013675 137, 54384 222.4%616 §7.506145  -0.0001008 323.75576 -0.3651784
150 100834, 9753L 6722.412897 00265781 0.001173L 164, 376 195.6255% 106.508089  -0.000MM0 X05.49687 -0.368U7%
XD 133045539263 6722.417%9 0021257 0.0009512 196.12102 163.87858 123186  -0.00009% 287.23%0L -0.36570
29 1575566. 709918 6722428 0.0099906 0.Q00772L 226.56017 123.43983 19713700  -0.000651 268.97516 -0.3651771
A0 011688.551681 6722444045 Q.04SXD O.000736] 286,933 75.06667 157.112907  0.0000165 250.7X29 -0.3651778
13 TUTEILIONS 6722.457286 0.0178111 0.000BX6 329.26307  30.73693 176508011 0.0000729 282.461%7 -0.365U79
QO XT%. AT 6724655 0.025%003 0.0010%65 3.%H5 356.0%5 191902097  0.0001073 24,200 -0.365180
450 YOO57.0%IL 672465648 0.02617% 0.0002975 32.33%7 3.66433 X9.295653  0.0001097 195.94337 -0.3651808
0 TELN.636H 672.645895 0018826 0.004S51 5749568 X2.5052 26,6906 0000782 177.683 -0.365181L

.Thé_fc-)l]owing Table summarizes the results of Tables 24,
9B, and 2C in order to facilitate comparisons for various
.parameters.

NONFROZEN ORBIT CASE

At the same nodal poiat at the start of the 500tk Rev, the

following deviations of LOPJ2S and
respect to the precision ASAP results,

LOP results, with
are obtained from

the above table:

- REV. TIME NODE LONG. ASC. PERIOD
NO. sec deg NQDE, deg. (not constant)
LOPJ2S 500 330616084 1772861 26377 67224138 e NONFROZEN ORBIT CASE
8444 . 0
(38,8445 days) e (o &t 0 ] TIME. sec PERIOD, NODE,deg LONG. Asc.
. ’ (at 500th Rev)  sec Node, deg
ASAP 500 3,356,150.60 1772833 2263757  G722.4160
(38.84444 days) GT22.4247 (max at 430 llev) LOPJ2S deviations 1.15 —0.0022  0.0026 —0.0021
6722.3706 (mnin at 140 Rev) : (031 km) (-0.23 km}
LOP 500 3,356,180.63  177.0843 226.G802 67224581 . 1135
38.64468 days) 22,4665 (max at 430 Rev LOP deviations 2094 -0.0423 04010 - 0.3135
( . §132.4128 2miu at 140 nev)) . (44.64 km) (34.9 km)



The preceding table shows that for the nonfrozen orbit
case (for only 39 days) the improvements of the parameter
results of the LOPJ2S program run are overwhelmingly
better than those of the corresponding LOP program run.
Of course, to correct the time error of 1.155, the mean
semi—major axis a of LOPJ2S has to be reduced slightly in
order to match the longitude of ascending node values
from the LOPJ2S and ASAP runs, as we have shown in
the similar frozen orbit case earlier. Thus it remains true
that the orbit prediction accuracy of LOPJ2S is about two
orders of magnitude better than that of LOP and the
computing speed of LOPJ2S is about two orders of
magnitude faster than that of ASAP.

IONS AND

We have demonstrated in Reference [9] that the

second—order conversion technique using the harmonics

Joo, Jao, Jao, and J% improves at least an order of
magnitude in orbital-elements conversion—accuracy over
the first—order method using the harmonic Jyo alone. It
becomes clear that we could further improve the
conversion accuracy even more by including “third—order"
harmonics Jso, Jeo, €tC., in the conversion technique. It
thus implies that the "second—order" conversion technique
still introduces some initial orbit—elements conversion
errors, albeit extremely small, which could partly affect
the future long—term orbit prediction accuracies.

The other part that could also affect-the prediction
accuracies can be explained mathematically in terms of the
effect of cross—harmonic product terms Jap*Jno, 022. In
our expansion method or averaging method, we have taken
care of the nonlinear term J3, but neglected cross—product

terms such as Jap*J30, J20*Jeo, etc., However, we remark
that these cross—product effects on orbit prediction
accuracies are negligibly small by comparisons with the
effect mentioned in the preceding.paragraph.

We state here that it is not meaningful to compare
accuracies of long—term orbit predictions of a LOPJ2S
programn run with respect to the corresponding
high—precision ASAP program run by comparing at any
prescribed ingtant the equivalence of respective set of
orbital elements from the two programs, after a long
duration of orbit propagations, via the orbital—elements
conversion method of Reference [9]. The reason is that
any slight deviation in timing or position between the two
programs after a long duration of trajectory propagations
would upset the equivalence of the orbital—elements
conversion results and thus be subject to ambiguously
difficult interpretations and comparisons. Accordingly,
our concensus is that the timing comparison technique at a
designated point (e.g., node) in a prescribed revolution
near the end of a long—periodic cycle, illustrated in the
preceding section, is the most meaningful way to gauge the
long—term orbit prediction accuracy of a LOPJ2S program
rur with respect to the corresponding high—precision
ASAP program run. In addition, any slight time eviation
can be easily corrected, if necessary, by slightly adjusting
the initial nodal period (via adjusting the semi—major axis
a) of either LOPJ2S or ASAP program run through an
 iterative cut—and—try method or some other quick and
simple graphic or analytic partial method.

- In conclusion, we successfully claim that the
incorporation of the J§, term effect in the LOPJ2S

program has accomplished the goal that long—term orbit
predictions using LOPJ2S formulation in mean elements
can be achieved with accuracies almost as close as those

using the high—precision ASAP formulation in osculating
elements. The LOPJ2S formulation can also be used in a
way to supply the conventionally sought—after information
on cross—track, along—track, and radial comporent errors.
The orbit prediction accuracy of LOPJ2S is about two
orders. of magnitude better than that of LOP and the
computing speed of the LOPJ2S program is at least two
orders of magnitude faster than that. of the high—precision
ASAP program. For any short—term orbit prediction, the
ASAP program must be used.
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